
 

 

6.1 I/O Operations: Reading keyboard input , Printing to screen 
 

Reading Keyboard Input 

Python provides two built-in functions to read a line of text from standard 
input, which by default comes from the keyboard. These functions are − 

• raw_input 

• input 

The raw_input Function 

The raw_input([prompt]) function reads one line from standard input and 
returns it as a string. 

>>> str = raw_input("Enter your input: ") 

Enter your input: mmpolytechnic 

>>> print(str) 

mmpolytechnic 

>>> 

The input Function 

The input([prompt]) function is equivalent to raw_input, except that it 
assumes the input is a valid Python expression and returns the evaluated 
result to you. 

>>> str = input("Enter your name: ") 

Enter your name: purva 

Error: 

NameError: name 'purva' is not defined(“for string input” instead of input 
use raw_input for accepting string value from user) 

>>> str = input("Enter your input: ") 

Enter your input: 1 

>>> print(str) 

1 



 

 

"6.2 File Handling: Opening file in different modes, accessing file contents 

using standard library functions, Reading and writing files, closing a file, 

Renaming and deleting file, Directories in python, File and related standard 

functions 

File handling is an important part of any web application. 

Python has several functions for creating, reading, updating, and deleting files. 

Opening file in different modes 

The key function for working with files in Python is the open() function. 

The open() function takes two parameters; filename, and mode. 

There are four different methods (modes) for opening a file: 
 

In addition you can specify if the file should be handled as binary or text mode 
 

"r" - Read - Default value. Opens a file for reading, error if the file does not 
exist 

"a" - Append - Opens a file for appending, creates the file if it does not exist 

"w" - Write - Opens a file for writing, creates the file if it does not exist 

"x" - Create - Creates the specified file, returns an error if the file exists 

"t" - Text - Default value. Text mode 

"b" - Binary - Binary mode (e.g. images) 



 

 

 

Accessing file contents using standard library functions Open a File on 

the Server 

Assume we have the following file, located in the same folder as Python: 



 

 

 

Read Only Parts of the File 

By default the read() method returns the whole text, but you can also specify 
how many characters you want to return: 

 



Readline 
 

 

You can return one line by using the readline() method: 
 

 

 

Calling readline() 2 times 
 



By looping through the lines of the file, read the whole file, line by line: 
 

 

 

Readlines 

Read and return a list of lines from the file. Reads in at most n bytes/ 
characters if specified. 

 
 

 



 

 

Reading and writing files 

The write() Method 

The write() method writes any string to an open file. 

Python strings can have binary data and not just text. 

The write() method does not add a newline character ('\n') to the end of the 
string − 

 

The read() Method 

The read() method reads a string from an open file. 

This method starts reading from the beginning of the file and if count is 

missing, then it tries to read as much as possible, maybe until the end of file. 
 



 

 

Closing a file 

Python automatically closes a file when the reference object of a file is 

reassigned to another file. It is a good practice to use the close() method to close 

a file. 
 

 

 

Renaming and deleting file 

Python os module provides methods that help you perform file-processing 

operations, such as renaming and deleting files. 

To use this module you need to import it first and then call any related 

functions. 

The rename() Method 

The rename() method takes two arguments, the current filename and the new 

filename. 



 

 

 

 
The remove() Method 

You can use the remove() method to delete files by supplying the name of the 
file to be deleted as the argument. 

 

 

 

 

"6.3 Exception Handling: 



 

 

An exception can be defined as an abnormal condition in a program resulting in 

the disruption in the flow of the program. 

Python provides us with the way to handle the Exception so that the other part 

of the code can be executed without any disruption. However, if we do not 

handle the exception, the interpreter doesn't execute all the code that exists 

after that. 

Common Exceptions 

A list of common exceptions that can be thrown from a normal python 

program is given below. 

ZeroDivisionError: Occurs when a number is divided by zero. 

NameError: It occurs when a name is not found. It may be local or global. 

IndentationError: If incorrect indentation is given. 

IOError: It occurs when Input Output operation fails. 

EOFError: It occurs when the end of the file is reached, and yet operations are 

being performed. 

Exception Handling- ‘ try: except:’statement 

• The try block lets you test a block of code for errors. 

• The except block lets you handle the error. 

• The finally block lets you execute code, regardless of the result of the 

try- and except blocks. 

When an error occurs, or exception as we call it, Python will normally stop 

and generate an error message. 

These exceptions can be handled using the try statement: 

Using multiple exceptions: 



 

 

 
 

 

 
The use the else statement with the try-except statement, place the code 

which will be executed in the scenario if no exception occurs in the try block. 

 

 
try: 

#block of code 

 

except Exception1: 

#block of code 

 

except Exception2: 

#block of code 

 

#other code 



 

 

The syntax to use the else statement with the try-except statement is given 

below. 
 

 
 
 
 

 



 

 

If file not present: 
 

If file present: 
 
 

 

 

The finally block 

The finally block with the try block in which, we can pace the important code 

which must be executed before the try statement throws an exception. 

(in given example we open file which is present in directory or filename 

where writing code. ) 



 

 

 

Raise an exception 

To throw (or raise) an exception, use the raise keyword. 
 



 

 

User defined exceptions. 

Python has many built-in exceptions which forces program to output an error 

when something in it goes wrong. 

However, sometimes need to create a custom exception that serves purpose. 

In Python, users can define such exceptions by creating a new class. This 

exception class has to be derived, either directly or indirectly, from Exception 

class. 
 

 


