
 

 

 List 

 

Chapter 5. 

Object Oriented Programming in Python 

12 Marks 
 

 

Introduction: 

• Python follows object oriented programming paradigm. It deals 

with declaring python classes and objects which lays the 

foundation of OOP’s concepts. 

• Python programming offers OOP style programming and provides 

an easy way to develop programs. It uses the OOP concepts that 

makes python more powerful to help design a program that 

represents real world entities. 

• Python supports OOP concepts such as Inheritance, Method 

Overriding, Data abstraction and Data hiding. 

 

 

Important terms in OOP/ Terminology of OOP- 

(Different OOP features supported by Python) 

• Class- Classes are defined by the user. The class provides the 

basic structure for an object. It consists of data members and 

method members that are used by the instances(object) of the 

class. 

• Object- A unique instance of a data structure that is defined by 

its class. An object comprises both data members and methods. 

Class itself does nothing but real functionality is achieved through 

their objects. 



 

 

• Data Member: A variable defined in either a class or an object; it 

holds the data associated with the class or object. 

• Instance variable: A variable that is defined in a method, its 

scope is only within the object that defines it. 

• Class variable: A variable that is defined in the class and can be 

used by all the instance of that class. 

• Instance: An object is an instance of a class. 

• Method: They are functions that are defined in the definition of 

class and are used by various instances of the class. 

• Function Overloading: A function defined more than one time 

with different behavior. (different arguments) 

• Encapsulation: It is the process of binding together the methods 

and data variables as a single entity i.e. class. It hides the data 

within the class and makes it available only through the methods. 

• Inheritance: The transfer of characteristics of a class to other 

classes that are derived from it. 

• Polymorphism: It allows one interface to be used for a set of 

actions. It means same function name(but different signatures) 

being used for different types. 

• Data abstraction: It is the process of hiding the implementation 

details and showing only functionality to the user. 



 

 

Classes- 

• Python is OOP language. Almost everything in python is an object 

with its properties and methods. 

• Object is simply a collection of data(variables) and 

methods(functions) that acts on those data. 

Creating Classes: 

A class is a block of statement that combine data and operations, 

which are performed on the data, into a group as a single unit and 

acts as a blueprint for the creation of objects. 

Syntax: 

class ClassName: 

‘ Optional class documentation string 

#list of python class variables 

# Python class constructor 

#Python class method definitions 

• In a class we can define variables, functions etc. While writing 

function in class we have to pass atleast one argument that is 

called self parameter. 

• The self parameter is a reference to the class itself and is used to 

access variables that belongs to the class. 



 

 

Example: Creating class in .py file 

class student: 

def display(self): # defining method in class 

print("Hello Python") 

• In python programming self is a default variable that contains the 

memory address of the instance of the current class. 

• So we can use self to refer to all the instance variable and instance 

methods. 

 

 

 

Objects and Creating Objects- 

• An object is an instance of a class that has some attributes and 

behavior. 

• Objects can be used to access the attributes of the class. 

Example: 

class student: 

def display(self): # defining method in class 

print("Hello Python") 

s1=student()  #creating object of class 

s1.display() #calling method of class using object 

Output: 

Hello Python 



 

 

Example: Class with get and put method 

class car: 

def get(self,color,style): 

self.color=color 

self.style=style 

def put(self): 

print(self.color) 

print(self.style) 

c=car() 

c.get('Brio','Red') 

c.put() 

Output: 

Brio 

Red 

 

Instance variable and Class variable: 

• Instance variable is defined in a method and its scope is only 

within the object that defines it. 

• Every object of the class has its own copy of that variable. Any 

changes made to the variable don’t reflect in other objects of that 

class. 



 

 

• Class variable is defined in the class and can be used by all the 

instances of that class. 

• Instance variables are unique for each instance, while class 

variables are shared by all instances. 

 

 

Example: For instance and class variables 

class sample: 

x=2 # x is class variable 

def get(self,y): # y is instance variable 

self.y=y 

s1=sample() 

s1.get(3) # Access attributes 

print(s1.x," ",s1.y) 

s2=sample() 

s2.y=4 

print(s2.x," ",s2.y) 

Output: 

2 3 

2 4 



 

 

Data Hiding: 

• Data hiding is a software development technique specifically used in object 

oriented programming to hide internal object details(data members). 

• It ensures exclusive data access to class members and protects object 

integrity by preventing unintended or intended changes. 

• Data hiding is also known as information hiding. An objects attributes may 

or may not be visible outside the class definition. 

• We need to name attributes with a double underscore(_ _) prefix and 

those attributes the are not directly visible to outsiders. Any variable prefix 

with double underscore is called private variable which is accessible only 

with class where it is declared. 

 

 

Example: For data hiding 

class counter: 

 secretcount=0 # private variable 

def count(self): # public method 

self __secretcount+=1 

print("count= ",self. secretcount) # accessible in the same class 

c1=counter() 

c1.count() # invoke method 

c1.count() 

print("Total count= ",c1. secretcount) # cannot access private variable directly 

Output: 

count= 1 

count= 2 



 

 

Traceback (most recent call last): 

File "D:\python programs\class_method.py", line 9, in <module> 

print("Total count= ",c1. secretcount) # cannot access private variable 

directly 

AttributeError: 'counter' object has no attribute ' secretcount' 

 

 

Data Encapsulation and Data Abstraction: 

• We can restrict access of methods and variables in a class with the help of 

encapsulation. It will prevent the data being modified by accident. 

• Encapsulation is used to hide the value or state of a structured data object 

inside a class, preventing unauthorized parties direct access to them. 

• Data abstraction refers to providing only essential information about the 

data to the outside world, hiding the background details of 

implementation. 

• Encapsulation is a process to bind data and functions together into a 

single unit i.e. class while abstraction is a process in which the data inside 

the class is the hidden from outside world. 

• In short hiding internal details and showing functionality is known as 

abstraction. 

• To support encapsulation, declare the methods or variables as private in the 

class. The private methods cannot be called by the object directly. It can be 

called only from within the class in which they are defined. 

• Any function with double underscore is called private method. 

Access modifiers for variables and methods are: 

• Public methods / variables- Accessible from anywhere inside the class, in 

the sub class, in same script file as well as outside the script file. 



 

 

• Private methods / variables- Accessible only in their own class. Starts with 

two underscores. 

Example: For access modifiers with data abstraction 

class student: 

 a=10 #private variable 

b=20 #public variable 

def  private_method(self): #private method 

print("Private method is called") 

def public_method(self): #public method 

print("public method is called") 

print("a= ",self. a) #can be accessible in same class 

s1=student() 

# print("a= ",s1. a) #generate error 

print("b=",s1.b) 

# s1. private_method() #generate error 

s1.public_method() 

Output: 

b= 20 

public method is called 

a= 10 



 

 

Creating Constructor: 

• Constructors are generally used for instantiating an object. 

• The task of constructors is to initialize(assign values) to the data 

members of the class when an object of class is created. 

• In Python the  init () method is called the constructor and is always 

called when an object is created. 

Syntax of constructor declaration : 

def  init (self): 

# body of the constructor 

 

 

Example: For creating constructor use_ _init_ _ method called as 

constructor. 

class student: 

def  init (self,rollno,name,age): 

self.rollno=rollno 

self.name=name 

self.age=age 

print("student object is created") 

p1=student(11,"Ajay",20) 

print("Roll No of student= ",p1.rollno) 

print("Name No of student= ",p1.name) 

print("Age No of student= ",p1.age) 



 

 

Output: 

student object is created 

Roll No of student= 11 

Name No of student= Ajay 

Age No of student= 20 

 

Programs: 

 

 

Define a class rectangle using length and width.It has a method which can 

compute area. 

class rectangle: 

def  init (self,L,W): 

self.L=L 

self.W=W 

def area(self): 

return self.L*self.W 

r=rectangle(2,10) 

print(r.area()) 

Output 

20 



 

 

Create a circle class and initialize it with radius. Make two methods 

getarea and getcircumference inside this class 

class circle: 

def  init (self,radius): 

self.radius=radius 

def getarea(self): 

return 3.14*self.radius*self.radius 

def getcircumference(self): 

return 2*3.14*self.radius 

c=circle(5) 

print("Area=",c.getarea()) 

print("Circumference=",c.getcircumference()) 

Output: 

Area= 78.5 

Circumference= 31.400000000000002 

 

 

Types of Constructor: 

There are two types of constructor- Default constructor and Parameterized 

constructor. 

Default constructor- The default constructor is simple constructor which does 

not accept any arguments. Its definition has only one argument which is a 

reference to the instance being constructed. 



 

 

Example: Display Hello message using Default constructor( It does not accept 

argument) 

class student: 

 

def  init (self): 

 

print("This is non parameterized constructor") 

def show(self,name): 

print("Hello",name) 

s1=student() 

s1.show("World") 

Output: 

This is non parameterized constructor 

Hello World 

 

 

Example: Counting the number of objects of a class 

 

class student: 

count=0 

def  init (self): 

student.count=student.count+1 



 

 

s1=student() 

s2=student() 

print("The number of student objects",student.count) 

 

 

 

Output: 

 

The number of student objects 2 

 

 

 

Parameterized constructor- Constructor with parameters is known as 

parameterized constructor. 

The parameterized constructor take its first argument as a reference to the instance 

being constructed known as self and the rest of the arguments are provided by the 

programmer. 

Example: For parameterized constructor 

class student: 

def  init (self,name): 

 

print("This is parameterized constructor") 

self.name=name 

def show(self): 

print("Hello",self.name) 

s1=student("World") 



 

 

s1.show() 

 

Output: 

 

This is parameterized constructor 

Hello World 

 

 

Destructor: 

 
A class can define a special method called destructor with the help of _ _del_ _(). 

It is invoked automatically when the instance (object) is about to be destroyed. 

It is mostly used to clean up non memory resources used by an instance(object). 

 

Example: For Destructor 

class student: 

def  init (self): 

 

print("This is non parameterized constructor") 

 

 

 

def  del (self): 

print("Destructor called") 

s1=student() 

s2=student() 

del s1 



 

 

Output: 

 

This is non parameterized constructor 

This is non parameterized constructor 

Destructor called 

 

 

Method Overloading: 

 
• Method overloading is the ability to define the method with the same name 

but with a different number of arguments and data types. 

• With this ability one method can perform different tasks, depending on the 

number of arguments or the types of the arguments given. 

• Method overloading is a concept in which a method in a class performs 

operations according to the parameters passed to it. 

• As in other language we can write a program having two methods with same 

name but with different number of arguments or order of arguments but in 

python if we will try to do the same we get the following issue with method 

overloading in python. 

Example- 

# To calculate area of rectangle 

def area(length,breadth): 

calc=length*breadth 

print(calc) 

# To calculate area of square 

def area(size): 

calc=size*size 



 

 

print(calc) 

area(3) 

area(4,5) 

 

Output- 

 

9 

 

Traceback (most recent call last): 

 

File "D:\python programs\trial.py", line 10, in <module> 

area(4,5) 

TypeError: area() takes 1 positional argument but 2 were given 

 

 

 

• Python does not support method overloading i.e it is not possible to define 

more than one method with the same name in a class in python. 

• This is because method arguments in python do not have a type. A method 

accepting one argument can be called with an integer value, a string or a 

double as shown in example. 

 

Example- 

class demo: 

def print_r(self,a,b): 

print(a) 

print(b) 

obj=demo() 

obj.print_r(10,'S') 



 

 

obj.print_r('S',10) 

Output: 

10 

S 

S 

10 

 

• In the above example same method works for two different data types. 

• It is clear that method overloading is not supported in python but that 

does not mean that we cannot call a method with different number of 

arguments. There are couple of alternatives available in python that 

make it possible to call the same method but with different number of 

arguments. 

Using Default Arguments: 

 

It is possible to provide default values to method arguments while defining a 

method. If method arguments are supplied default values, then it is not mandatory 

to supply those arguments while calling method as shown in example. 

Example 1: Method overloading with deafult arguments 

 

class demo: 

 

def arguments(self,a=None,b=None,c=None): 

if(a!=None and b!=None and c!=None): 

print("3 arguments") 

 

elif (a!=None and b!=None): 



 

 

print("2 arguments") 

elif a!=None: 

print("1 argument") 

else: 

print("0 arguments") 

obj=demo() 

obj.arguments("Amol","Kedar","Sanjay") 

obj.arguments("Amit","Rahul") 

obj.arguments("Sidharth") 

obj.arguments() 

Output- 

 

3 arguments 

 

2 arguments 

 

1 argument 

 

0 arguments 



 

 

Example 2: With a method to perform different operations using method 

overloading 

class operation: 

 

def add(self,a,b): 

return a+b 

op=operation() 

 

# To add two integer numbers 

 

print("Addition of integer numbers= ",op.add(10,20)) 

# To add two floating numbers 

print("Addition of integer numbers= ",op.add(11.12,12.13)) 

# To add two strings 

print("Addition of stings= ",op.add("Hello","World")) 

 

Output- 

 

Addition of integer numbers= 30 

Addition of integer numbers= 23.25 

Addition of stings= HelloWorld 



 

 

Inheritance: 

 
The mechanism of designing and constructing classes from other classes 

is called inheritance. 

Inheritance is the capability of one class to derive or inherit the properties from 

some another class. 

The new class is called derived class or child class and the class from which 

this derived class has been inherited is the base class or parent class. The benefits 

of inheritance are: 

1. It represents real-world relationships well. 

2. It provides reusability of a code. We don’t have to write the same code 

again and again. Also, it allows us to add more features to a class without 

modifying it. 

3. It is transitive in nature, which means that if class B inherits from another 

class A, then all the subclasses of B would automatically inherit from class 

A. 

 



car1.disp_price() 

 

 

Syntax: 

 

Class A: 

 

# Properties of class A 

Class B(A): 

# Class B inheriting property of class A 

# more properties of class B 

Example 1: Example of Inheritance without using constructor 

 

class vehicle: #parent class 

name="Maruti" 

def display(self): 

print("Name= ",self.name) 

class category(vehicle): # drived class 

price=400000 

def disp_price(self): 

print("price= ",self.price) 

car1=category() 

car1.display() 



car1.disp_price() 

 

 

Output: 

 

Name= Maruti 

price= 400000 

 

 

Example 2: Example of Inheritance using constructor 

 

class vehicle: #parent class 

 

def  init (self,name,price): 

self.name=name 

self.price=price 

def display(self): 

print("Name= ",self.name) 

class category(vehicle): # drived class 

def  init (self,name,price): 

vehicle. init (self,name,price) #pass data to base constructor 

def disp_price(self): 

print("price= ",self.price) 

car1=category("Maruti",400000) 

car1.display() 



 

 

car2=category("Honda",600000) 

car2.display() 

car2.disp_price() 

 

Output: 

 

Name= Maruti 

price= 400000 

Name= Honda 

price= 600000 

 

 

Multilevel Inheritance: 

 
In multilevel inheritance, features of the base class and the derived class are further 

inherited into the new derived class. This is similar to a relationship representing a 

child and grandfather. 

 



class c3(c2): 

 

 

Syntax: 

 

Class A: 

 

# Properties of class A 

Class B(A): 

# Class B inheriting property of class A 

# more properties of class B 

Class C(B): 

 

# Class C inheriting property of class B 

 

# thus, Class C also inherits properties of class A 

# more properties of class C 

Example 1: Python program to demonstrate multilevel inheritance 

 

#Mutilevel Inheritance 

class c1: 

def display1(self): 

print("class c1") 

class c2(c1): 

 

def display2(self): 

print("class c2") 



 

 

def display3(self): 

print("class c3") 

s1=c3() 

 

s1.display3() 

s1.display2() 

s1.display1() 

 

 

Output: 

 

class c3 

class c2 

class c1 

 

 

Example 2: Python program to demonstrate multilevel inheritance 

 

# Base class 

 

class Grandfather: 

grandfathername ="" 

def grandfather(self): 

print(self.grandfathername) 



 

 

# Intermediate class 

 

class Father(Grandfather): 

fathername = "" 

def father(self): 

print(self.fathername) 

 

 

# Derived class 

class Son(Father): 

def parent(self): 

 

print("GrandFather :", self.grandfathername) 

print("Father :", self.fathername) 

 

 

# Driver's code 

s1 = Son() 

s1.grandfathername = "Srinivas" 

s1.fathername = "Ankush" 

s1.parent() 

Output: 

 

GrandFather : Srinivas 



 

 

Father : Ankush 

 

 

 

Multiple Inheritance: 

 
When a class can be derived from more than one base classes this type of 

inheritance is called multiple inheritance. In multiple inheritance, all the features of 

the base classes are inherited into the derived class. 

 

 

Syntax: 

 

Class A: 

 

# variable of class A 

# functions of class A 

Class B: 

 

# variable of class B 

# functions of class B 

Class C(A,B): 



 

 

# Class C inheriting property of both class A and B 

# more properties of class C 

Example: Python program to demonstrate multiple inheritance 

 

# Base class1 

class Father: 

def display1(self): 

print("Father") 

# Base class2 

class Mother: 

def display2(self): 

print("Mother") 

# Derived class 

 

class Son(Father,Mother): 

def display3(self): 

print("Son") 

s1 = Son() 

s1.display3() 

s1.display2() 

s1.display1() 



 

 

 

 

 

Output: 

 

Son 

Mother 

Father 

 

 

Hierarchical Inheritance: 

 
When more than one derived classes are created from a single base this type of 

inheritence is called hierarchical inheritance. In this program, we have a parent 

(base) class and two child (derived) classes. 

 

 

 

 

Example : Python program to demonstrate Hierarchical inheritance 

 

# Base class 

class Parent: 



 

 

def func1(self): 

 

print("This function is in parent class.") 

 

 

 

# Derived class1 

class Child1(Parent): 

def func2(self): 

 

print("This function is in child 1.") 

 

 

 

# Derived class2 

class Child2(Parent): 

def func3(self): 

 

print("This function is in child 2.") 

 

 

 

object1 = Child1() 

object2 = Child2() 

object1.func1() 

object1.func2() 

object2.func1() 

object2.func3() 



print("This is base class") 

 

 

Output: 

 

This function is in parent class. 

This function is in child 1. 

This function is in parent class. 

This function is in child 2. 

 

 

Method Overriding: 

 
Method overriding is an ability of a class to change the implementation of 

a method provided by one of its base class. Method overriding is thus a strict part 

of inheritance mechanism. 

To override a method in base class, we must define a new method with sam 

name and same parameters in the derived class. 

Overriding is a very important part of OOP since it is feature that makes 

inheritance exploit its full power. Through method overriding a class may “copy” 

another class, avoiding duplicated code and at the same time enhance or customize 

part of it. 

Example: For method overriding 

 

class A: 

 

def display(self): 



super().display() 

 

 

class B(A): 

 

def display(self): 

 

print("This is derived class") 

obj=B() # instance of child 

obj.display() # child class overriden method 

 

Output- 

 

This is derived class 

 

 

 

Using super() Method: 

 

The super() method gives you access to methods in a super class from the 

subclass that inherits from it. 

The super() method returns a temporary object of the superclass that then 

allows you to call that superclass’s method. 

Example: For method overriding with super() 

 

class A: 

 

def display(self): 

print("This is base class") 

class B(A): 

 

def display(self): 



 

 

print("This is derived class") 

obj=B() # instance of child 

obj.display() # child class overriden method 

 

 

 

Output- 

 

This is base class 

This is derived class 

 

 

Composition Classes: 

 
• In composition we do not inherit from the base class but establish 

relationship between classes through the use of instance variables that are 

references to other objects. 

• Composition means that an object knows another object and explicitly 

delegates some tasks to it. While inheritance is implicit, composition is 

explicit in python. 

• We use composition when we want to use some aspects of another class 

without promising all of the features of that other class. 

Syntax: 

 

Class GenericClass: 

 

Define some attributes and methods 



 

 

Class AspecificClass: 

Instance_variable_of_generic_class=GenericClass 

#use this instance somewhere in the class 

Some_method(instance_varable_of_generic_class) 

 

 

• For example, we have three classes email, gmail and yahoo. In email class 

we are referring the gmail and using the concept of composition. 

Example: 

 

class gmail: 

 

def send_email(self,msg): 

 

print("sending '{}' from gmail".format(msg)) 

class yahoo: 

def send_email(self,msg): 

 

print("sending '{}' from yahoo".format(msg)) 

class email: 

provider=gmail() 

 

def set_provider(self,provider): 

self.provider=provider 

def send_email(self,msg): 



 

 

self.provider.send_email(msg) 

client1=email() 

client1.send_email("Hello") 

client1.set_provider(yahoo()) 

client1.send_email("Hello") 

 

 

Output: 

 

sending 'Hello' from gmail 

sending 'Hello' from yahoo 

 

 

Customization via Inheritance specializing inherited methods: 

 
• The tree-searching model of inheritance turns out to be a great way to 

specialize systems. Because inheritance finds names in subclasses before it 

checks superclasses, subclasses can replace default behavior by redefining 

the superclass's attributes. 

• In fact, you can build entire systems as hierarchies of classes, which are 

extended by adding new external subclasses rather than changing existing 

logic in place. 

• The idea of redefining inherited names leads to a variety of specialization 

techniques. 



 

 

• For  instance,  subclasses  may replace inherited  attributes 

completely, provide attributes  that  a  superclass  expects  to  find, 

and extend superclass methods by calling back to the superclass from an 

overridden method. 

Example- For specilaized inherited methods 

 

class A: 

 

"parent class" #parent class 

def display(self): 

print("This is base class") 

class B(A): 

"Child class" #derived class 

def display(self): 

A.display(self) 

 

print("This is derived class") 

obj=B() #instance of child 

obj.display() #child calls overridden method 

 

Output: 

 

This is base class 

This is derived class 



 

 

• In the above example derived class.display() just extends base class.display() 

behavior rather than replacing it completely. 

• Extension is the only way to interface with a superclass. 

 

• The following program defines multiple classes that illustrate a variety of 

common techniques. 

Super 

 

Defines a method function and a delegate that expects an action in a 

subclass 

Inheritor 

 

Doesn't provide any new names, so it gets everything defined in Super 

 

Replacer 

 

Overrides Super's method with a version of its own 

 

Extender 

 

Customizes Super's method by overriding and calling back to run the 

default 

Provider 

 

Implements the action method expected by Super's delegate method 



 

 

Example- Various ways to customize a common superclass 

 

class super: 

 

def method(self): 

 

print("in super.method") #default behavior 

def delegate(self): 

self.action() #expected to be defined 

class inheritor(super): 

pass 

 

class replacer(super): #replace method completely 

def method(self): 

print("in replacer.method") 

 

class extender(super): #extend method behavior 

def method(self): 

super.method(self) 

print("in extender.method") 

class provider(super): # fill in a required method 

def action(self): 

print("in provider.action“) 

 

for klass in (inheritor,replacer,extender): 



 

 

print("\n"+klass. name +"...") 

klass().method() 

print("\n provider...") 

x=provider() 

x.delegate() 

 

 

Output: 

 

inheritor... 

 

in super.method 

provider... 

replacer... 

in replacer.method 

provider... 

extender... 

in super.method 

 

in extender.method 

provider... 

in provider.action 



 

 

• When we call the delegate method through 

provider instance, two independent inheritance searches occur: 

• On the initial x.delegate call, Python finds the delegate method in Super, by 

searching at the provider instance and above. The instance x is passed into 

the method's self argument as usual. 

• Inside the super.delegate method, self.action invokes a new, independent 

inheritance   search   at self and   above.   Because self references 

a provider instance, the action method is located in the provider subclass. 



 

 

6.1  


