
CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

UNIT 3: DATA STRUCTURES IN PYTHON 

 
Python List 

 

• List in python is implemented to store the sequence of various type of data 

• A list can be defined as a collection of values or items of different types. 

• The items in the list are separated with the comma (,) and enclosed with the square brackets []. 

 
A list can be defined as follows. 

 
1. L1 = ["MMP", 102, "USA"] 

2. L2 = [1, 2, 3, 4, 5, 6] 

3. L3 = [1, "GAD"] 

 
Accessing List 

 
The elements of the list can be accessed by using the slice operator []. 

The index starts from 0 and goes to length - 1. 

The first element of the list is stored at the 0th index, the second element of the list is stored at the 1st index, and 
so on. 

 
Consider the following example. 

 

 
Updating List values 

 
Lists are the most versatile data structures in python since they are immutable and their values can be updated by 
using the slice and assignment operator. 

 
List = [1, 2, 3, 4, 5, 6] 



CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 

 
print(List) 

 
Output :[1, 2, 3, 4, 5, 6] 

 
List[2] = 10; 

print(List) 

 
Output: [1, 2, 10, 4, 5, 6] 

 
List[1:3] = [89, 78] 

print(List) 

 
Output : [1, 89, 78, 4, 5, 6] 

 

 
Deleting List values 

 
The list elements can also be deleted by using the del keyword. Python also provides us the remove() method if we 
do not know which element is to be deleted from the list. 

 
Consider the following example to delete the list elements. 

 
List = [0,1,2,3,4] 

print(List) 

 
Output: 

 
 [0, 1, 2, 3, 4]  

 
del List[0] 

print(List) 

 
Output: 

 
 [1, 2, 3, 4]  

 
del List[3] 

print(List) 

 
Output: 

 

[1, 2, 3] 



CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 

 
Python List Built-in functions 

 
Python provides the following built-in functions which can be used with the lists. 

 

SN Function Description 

1 cmp(list1, list2) It compares the elements of both the lists. 

2 len(list) It is used to calculate the length of the list. 

3 max(list) It returns the maximum element of the list. 

4 min(list) It returns the minimum element of the list. 

5 list(seq) It converts any sequence to the list. 

 
Python List Operations 

 
The concatenation (+) and repetition (*) operator work in the same way as they were working with the strings. 

 
Consider a List l1 = [1, 2, 3, 4] and l2 = [5, 6, 7, 8] 

 

Operator Description Example 

Repetition The repetition operator enables the list elements to be repeated 

multiple times. 

L1*2 = [1, 2, 3, 4, 1, 2, 

3, 4] 

Concatenation It concatenates the list mentioned on either side of the operator. l1+l2 = [1, 2, 3, 4, 5, 6, 

7, 8] 

Membership It returns true if a particular item exists in a particular list 

otherwise false. 

print(2 in l1) prints 

True. 

Iteration The for loop is used to iterate over the list elements. for i in l1: 



CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 

  

print(i) 

Output 

 
1 

2 

3 

4 

Length It is used to get the length of the list len(l1) = 4 

 
 
 

 
Python Tuple 

 

• Python Tuple is used to store the sequence of immutable python objects. 

• Tuple is immutable and the value of the items stored in the tuple cannot be changed. 

• A tuple can be written as the collection of comma-separated values enclosed with the small brackets. 

 
Where use tuple 

 
Using tuple instead of list is used in the following scenario. 

 
1. Using tuple instead of list gives us a clear idea that tuple data is constant and must not be changed. 

 
2. Tuple can simulate dictionary without keys. Consider the following nested structure which can be used as a 
dictionary. 

 
[(101, "CO", 22), (102, "ME", 28), (103, "AE", 30)] 

 
3. Tuple can be used as the key inside dictionary due to its immutable nature. 

 
A tuple can be defined as follows. 

 
T1 = (101, "Ayush", 22) 

T2 = ("Apple", "Banana", "Orange") 

 
Accessing tuple 

 
The indexing in the tuple starts from 0 and goes to length(tuple) - 1. 

 
The items in the tuple can be accessed by using the slice operator. Python also allows us to use the colon operator 

to access multiple items in the tuple. 



CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 

 

 

 
The tuple items can not be deleted by using the del keyword as tuples are immutable. To delete an entire tuple, 

we can use the del keyword with the tuple name 

 
Consider the following example. 

 
tuple1 = (1, 2, 3, 4, 5, 6) 

print(tuple1) 

del tuple1 

print(tuple1) 

Output: 

 

 
Basic Tuple operations 

 
The operators like concatenation (+), repetition (*), Membership (in) works in the same way as they work with the 
list. Consider the following table for more detail. 

 
Let's say Tuple t = (1, 2, 3, 4, 5) and Tuple t1 = (6, 7, 8, 9) are declared. 

 

Operator Description Example 

Repetition The repetition operator enables the tuple elements to be repeated T1*2 = (1, 2, 3, 4, 5, 1, 2, 

 multiple times. 3, 4, 5) 

(1, 2, 3, 4, 5, 6) 
Traceback (most recent call last): 
File "tuple.py", line 4, in <module> 
print(tuple1) 

NameError: name 'tuple1' is not defined 



CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 

Concatenation It concatenates the tuple mentioned on either side of the 

operator. 

T1+T2 = (1, 2, 3, 4, 5, 6, 7, 

8, 9) 

Membership It returns true if a particular item exists in the tuple otherwise 

false. 

print (2 in T1) prints True. 

Iteration The for loop is used to iterate over the tuple elements. for i in T1: 

  print(i) 

  Output 

  
1 

  2 

  3 

  4 

  5 

Length It is used to get the length of the tuple. len(T1) = 5 

 
Python Tuple inbuilt functions 

SN Function Description 

1 cmp(tuple1, 

tuple2) 

It compares two tuples and returns true if tuple1 is greater than tuple2 otherwise 

false. 

2 len(tuple) It calculates the length of the tuple. 

3 max(tuple) It returns the maximum element of the tuple. 

4 min(tuple) It returns the minimum element of the tuple. 

5 tuple(seq) It converts the specified sequence to the tuple. 



CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 

 
List VS Tuple 

 

SN List Tuple 

1 The literal syntax of list is shown by the []. The literal syntax of the tuple is shown by the (). 

2 The List is mutable. The tuple is immutable. 

3 The List has the variable length. The tuple has the fixed length. 

4 The list provides more functionality than tuple. The tuple provides less functionality than the list. 

5 The list Is used in the scenario in which we need 

to store the simple collections with no 

constraints where the value of the items can be 

changed. 

The tuple is used in the cases where we need to store 

the read-only collections i.e., the value of the items can 

not be changed. It can be used as the key inside the 

dictionary. 

 
Python Set 

 
Unordered collection of various items enclosed within the curly braces. 

The elements of the set can not be duplicate. 

The elements of the python set must be immutable. 

 
Creating a set 

 
Example 1: using curly braces 

Days = {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"} 

print(Days) 

print(type(Days)) 

Output: 



CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 

 
 

Example 2: using set() method 

Days = set(["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]) 

print(Days) 

 
Output: 

 
 {'Friday', 'Wednesday', 'Thursday', 'Saturday', 'Monday', 'Tuesday', 'Sunday'}  

 
Accessing set values 

Days = {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"} 

print(Days) 

print("the set elements ... ") 

for i in Days: 

print(i) 

 
Output: 

 

 

 
Removing items from the set 

 
Following methods used to remove the items from the set 

 
1. discard 

2. remove 

3. pop 
 

 

• discard() method 

 
Python provides discard() method which can be used to remove the items from the set. 

 
Months = set(["January","February", "March", "April", "May", "June"]) 

print("\nRemoving some months from the set..."); 

Months.discard("January"); 

{'Friday', 'Tuesday', 'Monday', 'Saturday', 'Thursday', 'Sunday', 'Wednesday'} 
<class 'set'> 

{'Friday', 'Tuesday', 'Monday', 'Saturday', 'Thursday', 'Sunday', 'Wednesday'} 
the set elements ... 
Friday 
Tuesday 
Monday 
Saturday 
Thursday 
Sunday 
Wednesday 



CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 

 
Months.discard("May"); 

print("\nPrinting the modified set..."); 

print(Months) 

output: 
{'February', 'January', 'March', 'April', 'June', 'May'} 
Removing some months from the set... 
Printing the modified set... 
{'February', 'March', 'April', 'June'} 

• remove() method 

 
Remove "banana" by using the remove() method: 

thisset = {"apple", "banana", "cherry"} 

thisset.remove("banana") 

print(thisset) 

 
output: 

{"apple”, "cherry"} 

• pop() method 

 
the pop(), method to remove an item, but this method will remove the last item. Remember that sets are 
unordered, so you will not know what item that gets removed. 

 
The return value of the pop() method is the removed item. 

 
Note: Sets are unordered, so when using the pop() method, you will not know which item that gets removed. 

 

thisset = {"apple", "banana", "cherry"} 

x = thisset.pop() 

print(x) 

print(thisset) 

output: 
apple 
{'cherry', 'banana'} 

 

delete the set 

Example 

 
Remove the last item by using the pop() method: 



CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 
 
 

 
The del keyword will delete the set completely: 

thisset = {"apple", "banana", "cherry"} 

del thisset 

print(thisset) 

output: 

File "demo_set_del.py", line 5, in <module> 
print(thisset) #this will raise an error because the set no longer exists 

NameError: name 'thisset' is not defined 

Difference between discard() and remove() 

 
If the key to be deleted from the set using discard() doesn't exist in the set, the python will not give the error. The 
program maintains its control flow. 

 
On the other hand, if the item to be deleted from the set using remove() doesn't exist in the set, the python will 
give the error. 

 
Adding items to the set 

• add() method 

• update() method. 

 
Python provides the add() method which can be used to add some particular item to the set. 

Months = set(["January","February", "March", "April", "May", "June"]) 

Months.add("July"); 

Months.add("August"); 

print(Months) 

output: 
{'February', 'July', 'May', 'April', 'March', 'August', 'June', 'January'} 

 
Months = set(["January","February", "March", "April", "May", "June"]) 

Months.update(["July","August","September","October"]); 

print(Months) 

output: 

{'January', 'February', 'April', 'August', 'October', 'May', 'June', 'July', 'September', 'March'} 

 

Python set operations (union, intersection, difference and symmetric difference) 

In Python, below quick operands can be used for different operations. 
 

| for union. 
& for intersection. 



CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 

 

 
A = {0, 2, 4, 6, 8}; 
B = {1, 2, 3, 4, 5}; 

 
# union 
print("Union :", A | B) 

# intersection 
print("Intersection :", A & B) 

# difference 
print("Difference :", A - B) 

 
# symmetric difference 
print("Symmetric difference :", A ̂  B) 
Output: 

 

 
Built-in Functions with Set 

Built-in functions like all(), any(), enumerate(), len(), max(), min(), sorted(), sum() etc. are commonly used with set 
to perform different tasks. 

 

Function Description 

all() Return True if all elements of the set are true (or if the set is empty). 

any() Return True if any element of the set is true. If the set is empty, return False. 

enumerate() Return an enumerate object. It contains the index and value of all the items of set as a pair. 

len() Return the length (the number of items) in the set. 

max() Return the largest item in the set. 

– for difference 
^ for symmetric difference 

('Union :', set([0, 1, 2, 3, 4, 5, 6, 8])) 

('Intersection :', set([2, 4])) 

('Difference :', set([8, 0, 6])) 

('Symmetric difference :', set([0, 1, 3, 5, 6, 8])) 

https://www.programiz.com/python-programming/methods/built-in/all
https://www.programiz.com/python-programming/methods/built-in/any
https://www.programiz.com/python-programming/methods/built-in/enumerate
https://www.programiz.com/python-programming/methods/built-in/len
https://www.programiz.com/python-programming/methods/built-in/max


CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 

min() Return the smallest item in the set. 

sorted() Return a new sorted list from elements in the set(does not sort the set itself). 

sum() Retrun the sum of all elements in the set. 

Dictionary 

 
Dictionary is used to implement the key-value pair in python. 

 
The keys are the immutable python object, i.e., Numbers, string or tuple. 

 

Creating the dictionary 

 
The dictionary can be created by using multiple key-value pairs enclosed with the small brackets () and separated 
by the colon (:). 

 
The collections of the key-value pairs are enclosed within the curly braces {}. 

The syntax to define the dictionary is given below. 

Dict = {"Name": "Ayush","Age": 22} 

 

Accessing the dictionary values 
 

 
Employee = {"Name": "John", "Age": 29, "salary":25000,"Company":"GOOGLE"} 

print(Employee) 

output: 

{'Name': 'John', 'Age': 29, 'salary': 25000, 'Company': 'GOOGLE'} 

 
The dictionary values can be accessed in the following way: 

Employee = {"Name": "John", "Age": 29, "salary":25000,"Company":"GOOGLE"} 

print("printing Employee data ..... ") 

print("Name :",Employee["Name"]) 

print("Age : ",Employee["Age"]) 

print("Salary : ",Employee["salary"]) 

print("Company : ", Employee["Company"]) 

Updating dictionary values 

https://www.programiz.com/python-programming/methods/built-in/min
https://www.programiz.com/python-programming/methods/built-in/sorted
https://www.programiz.com/python-programming/methods/built-in/sum


CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 
Dictionary is mutable. We can add new items or change the value of existing items using assignment operator. 

If the key is already present, value gets updated, else a new key: value pair is added to the dictionary. 

my_dict = {'name':'MMP', 'age': 26} 

 
# update value 

my_dict['age'] = 27 

print(my_dict) 

Output: {'age': 27, 'name': 'MMP'} 

 
# add item 

my_dict['address'] = 'Downtown' 

print(my_dict) 

Output: {'address': 'Downtown', 'age': 27, 'name': 'MMP'} 

 

Deleting elements using del keyword 

 
Employee = {"Name": "John", "Age": 29, "salary":25000,"Company":"GOOGLE"} 

del Employee["Name"] 

del Employee["Company"] 

print("printing the modified information ") 

print(Employee) 

Output: 

 
Dictionary Operations 

Below is a list of common dictionary operations: 

 

• create an empty dictionary 

x = {} 

 

 

• create a three items dictionary 

x = {"one":1, "two":2, "three":3} 

printing the modified information 
{'Age': 29, 'salary': 25000} 



CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 

 

• access an element 

x['two'] 

 

 

• get a list of all the keys 

x.keys() 

 

 

• get a list of all the values 

x.values() 

 

 

• add an entry 

• x["four"]=4 

 
 

 

• change an entry 

x["one"] = "uno" 

 

 

• delete an entry 

del x["four"] 

 

 

• remove all items 

x.clear() 

 

 

• number of items 

z = len(x) 



CO: PERFORM OPERATIONS ON DATA STRUCTURES IN PYTHON 

MM Polytechnic,Thergaon Pune 

 

 

 

 

• looping over keys 

for item in x.keys(): print item 

 

 

• looping over values 

 
for item in x.values(): print item 

 

 

Built-in Dictionary functions 

 
The built-in python dictionary methods along with the description are given below. 

 

SN Function Description 

1 cmp(dict1, 

dict2) 

It compares the items of both the dictionary and returns true if 

the first dictionary values are greater than the second 

dictionary, otherwise it returns false. 

2 len(dict) It is used to calculate the length of the dictionary. 

3 str(dict) It converts the dictionary into the printable string 

representation. 

4 type(variable) It is used to print the type of the passed variable. 



 

 

Use of Python built-in functions(e.g. type/data conversion functions, math functions , etc ) 
1. int(a,base) : This function converts any data type to integer. ‘Base’ specifies the base in which string is if data 

type is string. 

2. float() : This function is used to convert any data type to a floating point number 

# Python code to demonstrate Type conversion 

# initializing string 

s = "10010" 

 
# printing string converting to int base 2 

c = int(s,2) 

print ("After converting to integer base 2 : ", end="") 

print (c) 

 
# printing string converting to float 

e = float(s) 

print ("After converting to float : ", end="") 

print (e) 

Output: 
 

3. ord() : This function is used to convert a character to integer. 

4. hex() : This function is to convert integer to hexadecimal string. 

5. oct() : This function is to convert integer to octal string. 

# initializing integer 

s = '4' 
 

# printing character converting to integer 
c = ord(s) 
print ("After converting character to integer : ",end="") 
print (c) 

# printing integer converting to hexadecimal string 
c = hex(56) 
print ("After converting 56 to hexadecimal string : ",end="") 
print (c) 

 
# printing integer converting to octal string 
c = oct(56) 
print ("After converting 56 to octal string : ",end="") 
print (c) 
Output: 

After converting to integer base 2 : 18 

After converting to float : 10010.0 



 

 

 

6. tuple() : This function is used to convert to a tuple. 

7. set() : This function returns the type after converting to set. 

8. list() : This function is used to convert any data type to a list type. 

# Python code to demonstrate Type conversion 
# using tuple(), set(), list() 

 
# initializing string 
s = 'geeks' 

 
# printing string converting to tuple 
c = tuple(s) 
print ("After converting string to tuple : ",end="") 
print (c) 

 
# printing string converting to set 
c = set(s) 
print ("After converting string to set : ",end="") 
print (c) 

# printing string converting to list 
c = list(s) 
print ("After converting string to list : ",end="") 
print (c) 
Output: 

 

9. dict() : This function is used to convert a tuple of order (key,value) into a dictionary. 

10. str() : Used to convert integer into a string. 
11. complex(real,imag) : : This function converts real numbers to complex(real,imag) number. 
# Python code to demonstrate Type conversion 
# using dict(), complex(), str() 

 
 

# initializing integers 
a = 1 
b = 2 

# initializing tuple 
tup = (('a', 1) ,('f', 2), ('g', 3)) 

# printing integer converting to complex number 

After converting character to integer : 52 

After converting 56 to hexadecimal string : 0x38 

After converting 56 to octal string : 0o70 

After converting string to tuple : ('g', 'e', 'e', 'k', 's') 

After converting string to set : {'k', 'e', 's', 'g'} 

After converting string to list : ['g', 'e', 'e', 'k', 's'] 



 

 

c = complex(1,2) 
print ("After converting integer to complex number : ",end="") 
print (c) 

# printing integer converting to string 
c = str(a) 
print ("After converting integer to string : ",end="") 
print (c) 

 
# printing tuple converting to expression dictionary 
c = dict(tup) 
print ("After converting tuple to dictionary : ",end="") 
print (c) 
Output: 

 

 
 

 
4.2 User defined functions: Function definition, function calling, function arguments and 

parameter passing, Return statement, Scope of Variables: Global variable and Local variable. 

the user can create its functions which can be called user-defined functions. 

 
In python, we can use def keyword to define the function. The syntax to define a function in python is given below. 

 
def my_function(): 

function code 

return <expression> 

 
 

 

Function calling 

 
In python, a function must be defined before the function calling otherwise the python interpreter gives an error. 
Once the function is defined, we can call it from another function or the python prompt. To call the function, use 
the function name followed by the parentheses. 

 
A simple function that prints the message "Hello Word" is given below. 

 
def hello_world(): 

print("hello world") 

hello_world() 

After converting integer to complex number : (1+2j) 

After converting integer to string : 1 

After converting tuple to dictionary : {'a': 1, 'f': 2, 'g': 3} 



 

 

Output: 

 
hello world 

 

Arguments 

 
Information can be passed into functions as arguments. 

 
Arguments are specified after the function name, inside the parentheses. 

 
def hi(name): 

print(name) 

 
hi("MMP") 

Output: 

MMP 
 

 
def my_function(fname, lname): 

print(fname + " " + lname) 

 
my_function("Purva","Pawar") 

Output: 

Purva Pawar 
 
 

 
Arbitrary Arguments, *args 

 
If you do not know how many arguments that will be passed into your function, add a * before the parameter 
name in the function definition. 

 
If the number of arguments is unknown, add a * before the parameter name: 

def my_function(*kids): 

print("The youngest child is " + kids[1]) 

 
my_function("purva","sandesh","jiyansh") 

Output 

The youngest child is sandesh 

 
If the number of keyword arguments is unknown, add a double ** before the parameter name: 

def my_function(**kid): 

print("Her last name is " + kid["lname"]) 

my_function(fname = "nitu", lname = "mini") 



 

 

Output 

Her last name is mini 
 
 

 

Default Parameter Value 

 
If we call the function without argument, it uses the default value: 

 
def my_function(country = "Norway"): 

print("I am from " + country) 

 
my_function("Sweden") 

my_function("India") 

my_function() 

my_function("Brazil") 

Output 

I am from Sweden 

I am from India 

I am from Norway 

I am from Brazil 

 

Passing a List as an Argument 

def my_function(food): 

for x in food: 

print(x) 

fruits = ["apple", "banana", "cherry"] 

my_function(fruits) 

Output 

apple 

banana 

cherry 

 

Return statement 
def my_function(x): 

return 5 * x 

 
print(my_function(3)) 

print(my_function(5)) 



print(my_function(9)) 

Output 

 

 

15 

25 

45 
 

 

Scope of Variables: Global variable and Local variable. 

 
Local variable 

 
A variable created inside a function belongs to the local scope of that function, and can only be used inside that 
function. 
A variable created inside a function is available inside that function: 
def myfunc(): 

x = 300 
print(x) 

myfunc() 
Output 

300 

Global variable 

Global variables are available from within any scope, global and local. 
A variable created outside of a function is global and can be used by anyone: 
x = 300 

 
def myfunc(): 

print(x) 

myfunc() 

print(x) 
Output 
300 

 
300 
The global keyword makes the variable global. 

def myfunc(): 

global x 

x = 300 

myfunc() 



print(x) 

Output 

 

 

300 

 

Modules: Writing modules 

Shown below is a Python script containing the definition of 
 

function. It is saved as hello.py. 

Example: hello.py 

def SayHello(name): 
print("Hello {}! How are you?".format(name)) 
return 

 
 

 

importing modules 
>>> import hello 

>>> hello.SayHello("purva") 

Output 

Hello purva! How are you? 
 

 

 importing objects from modules 
To import only parts from a module, by using the from keyword. 

 

def greeting(name): 

print("Hello, " + name) 

 
person1 = { 

"name": "John", 

"age": 36, 

"country": "Norway" 

} 
 
 

from mymodule import person1 

print (person1["age"]) 

Output: 

SayHello() 

The module named mymodule has one function and one dictionary: 

Import only the person1 dictionary from the module: 



 

 

36 

 
 

 
 Python built-in modules(e.g. Numeric and Mathematical module, Functional programming 

module) 
Python - Math Module 

>>> import math 

>>>math.pi 

3.141592653589793 

>>>math.log(10) 

2.302585092994046 

>>math.sin(0.5235987755982988) 

0.49999999999999994 

>>>math.cos(0.5235987755982988) 

0.8660254037844387 

>>>math.tan(0.5235987755982988) 

0.5773502691896257 

>>>math.radians(30) 

0.5235987755982988 

>>>math.degrees(math.pi/6) 

29.999999999999996 

 

Namespace and Scoping. 

• A namespace is a mapping from names to objects. 

• Python implements namespaces in the form of dictionaries. 

• It maintains a name-to-object mapping where names act as keys and the objects as values. 

• Multiple namespaces may have the same name but pointing to a different variable. 

 

• A scope is a textual region of a Python program where a namespace is directly accessible. 
 

 
➢ Local scope 

 
➢ Non-local scope 

 
➢ Global scope 

 
➢ Built-ins scope 



Steps: 

 

 

init  .py  

1. The local scope. The local scope is determined by whether you are in a class/function definition or not. Inside 
a class/function, the local scope refers to the names defined inside them. Outside a class/function, the local 
scope is the same as the global scope. 

 
2. The non-local scope. A non-local scope is midways between the local scope and the global scope, e.g. the 

non-local scope of a function defined inside another function is the enclosing function itself. 

 
3. The global scope. This refers to the scope outside any functions or class definitions. It also known as the 

module scope. 

 
4. The built-ins scope. This scope, as the name suggests, is a scope that is built into Python. While it resides in 

its own module, any Python program is qualified to call the names defined here without requiring special 
access. 

 
# var1 is in the global namespace 
var1 = 5 
def some_func(): 

 
# var2 is in the local namespace 
var2 = 6 
def some_inner_func(): 

 
# var3 is in the nested local 
# namespace 
var3 = 7 

 
 

 

Python Packages : Introduction 
Python has packages for directories and modules for files. As a directory can contain sub-directories and files, a 

Python package can have sub-packages and modules. 

A directory must contain a file named  in order for Python to consider it as a package. This file can be 

left empty but we generally place the initialization code for that package in this file. 
 

https://docs.python.org/3/library/builtins.html#module-builtins
https://www.programiz.com/python-programming/modules


 

 

• First create folder game. 

• Inside it again create folder sound. 

• Inside sound folder create load.py file. 

• Inside sound folder create pause.py file. 

• Inside sound folder create play.py file. 

• Import package game and subpackage sound(files:load,pause,play) 
 

 



sin, cos and tan ratios for the angle of 30 degrees (0.5235987755982988 radians): 

 

 

 
 

 

 
Importing module from a package 

import game.sound.load 
Now if this module contains a function named load(), we must use the full name to reference it. 

 
game.sound.load.load() 

 
 

 
Math package: 

>>> import math 

>>>math.pi 

3.141592653589793 

https://www.programiz.com/python-programming/function


 

 

>>math.sin(0.5235987755982988) 

0.49999999999999994 

>>>math.cos(0.5235987755982988) 

0.8660254037844387 

>>>math.tan(0.5235987755982988) 

0.5773502691896257 

NumPy is a python library used for working with arrays. 

NumPy stands for Numerical Python. 
 

 

Why Use NumPy ? 

 
In Python we have lists that serve the purpose of arrays, but they are slow to process. 

NumPy aims to provide an array object that is up to 50x faster that traditional Python lists. 

• Install it using this command: 

 
 C:\Users\Your Name>pip install numpy  

 
Import NumPy 

 
Use a tuple to create a NumPy array: 



 

 

 
 

 
0-D Arrays 

 
0-D arrays, or Scalars, are the elements in an array. Each value in an array is a 0-D array. 

 
Create a 0-D array with value 42 

 

 

 
1-D Arrays 

 
An array that has 0-D arrays as its elements is called uni-dimensional or 1-D array. 

These are the most common and basic arrays. 

Create a 1-D array containing the values 1,2,3,4,5: 



 

 

 

Create a 2-D array containing two arrays with the values 1,2,3 and 4,5,6: 
 

 
Create a 3-D array with two 2-D arrays, both containing two arrays with the values 1,2,3 and 4,5,6: 

 

 
SciPy package 

SciPy, pronounced as Sigh Pi, is a scientific python open source, distributed under the BSD licensed library to 

perform Mathematical, Scientific and Engineering Computations.. 

The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. 

SciPy Sub-packages 

• SciPy consists of all the numerical code. 



 

 

• SciPy is organized into sub-packages covering different scientific computing domains. These are 
summarized in the following table − 

 

scipy.cluster Vector quantization / Kmeans 

scipy.constants Physical and mathematical constants 

scipy.fftpack Fourier transform 

scipy.integrate Integration routines 

scipy.interpolate Interpolation 

scipy.io Data input and output 

scipy.linalg Linear algebra routines 

scipy.ndimage n-dimensional image package 

scipy.odr Orthogonal distance regression 

scipy.optimize Optimization 

scipy.signal Signal processing 

scipy.sparse Sparse matrices 

scipy.spatial Spatial data structures and algorithms 

scipy.special Any special mathematical functions 

https://docs.scipy.org/doc/scipy/reference/cluster.html#module-scipy.cluster
https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate
https://docs.scipy.org/doc/scipy/reference/interpolate.html#module-scipy.interpolate
https://docs.scipy.org/doc/scipy/reference/io.html#module-scipy.io
https://docs.scipy.org/doc/scipy/reference/linalg.html#module-scipy.linalg
https://docs.scipy.org/doc/scipy/reference/ndimage.html#module-scipy.ndimage
https://docs.scipy.org/doc/scipy/reference/odr.html#module-scipy.odr
https://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize
https://docs.scipy.org/doc/scipy/reference/signal.html#module-scipy.signal
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
https://docs.scipy.org/doc/scipy/reference/spatial.html#module-scipy.spatial
https://docs.scipy.org/doc/scipy/reference/special.html#module-scipy.special


 

 

scipy.stats Statistics 

 
Matplotlib is a plotting library for the Python programming language and its 
numerical mathematics extension NumPy. 
It provides an object-oriented API for embedding plots into applications using 
general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK+ SciPy makes 
use of Matplotlib. 

 
Pandas is used for data manipulation, analysis and cleaning. Python pandas is well 
suited for different kinds of data, such as: 

• Tabular data with heterogeneously-typed columns 

• Ordered and unordered time series data 

• Arbitrary matrix data with row & column labels 
Any other form of observational 

https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

